Nonparametric variable screening for multivariate additive models
نویسندگان
چکیده
In this paper we develop a novel procedure of variable screening for multivariate additive random-effects model, based on B-spline function approximations. With these approximations, the so-called signal-to-noise ratio (SNR) can be defined to inform importance each covariate in model. Then, SNR-based forward filtering is conducted covariates by using iterative projections multiple response data into space covariates. The proposed easy use and allows user pool non-linear information across heterogeneous subjects through variables. We establish an asymptotic theory selection consistency under some regularity conditions. By simulations, show that has superior performance over existing methods terms sensitivity specificity. also apply anti-cancer drug data, revealing set biomarkers potentially influence concentrations drugs cancer cell lines.
منابع مشابه
Variable Selection in Nonparametric Additive Models.
We consider a nonparametric additive model of a conditional mean function in which the number of variables and additive components may be larger than the sample size but the number of nonzero additive components is "small" relative to the sample size. The statistical problem is to determine which additive components are nonzero. The additive components are approximated by truncated series expan...
متن کاملEstimation and Variable Selection in Additive Nonparametric Regression Models 1
Additive regression models have been shown to be useful in many situations. Numerical estimation of these models is usually done using the back-tting technique. This iterative numerical procedure converges very fast but has the disadvantage of a complicated`hat matrix.' This paper proposes an estimator with an explicit`hat matrix' which does not use backktting. The asymptotic normality of the e...
متن کاملNonparametric Inferences for Additive Models
Additive models with backfitting algorithms are popular multivariate nonparametric fitting techniques. However, the inferences of the models have not been very well developed, due partially to the complexity of the backfitting estimators. There are few tools available to answer some important and frequently asked questions, such as whether a specific additive component is significant or admits ...
متن کاملNonparametric Independence Screening in Sparse Ultra-High Dimensional Additive Models.
A variable screening procedure via correlation learning was proposed in Fan and Lv (2008) to reduce dimensionality in sparse ultra-high dimensional models. Even when the true model is linear, the marginal regression can be highly nonlinear. To address this issue, we further extend the correlation learning to marginal nonparametric learning. Our nonparametric independence screening is called NIS...
متن کاملEmpirical Likelihood for Nonparametric Additive Models
Nonparametric additive modeling is a fundamental tool for statistical data analysis which allows flexible functional forms for conditional mean or quantile functions but avoids the curse of dimensionality for fully nonparametric methods induced by high-dimensional covariates. This paper proposes empirical likelihood-based inference methods for unknown functions in three types of nonparametric a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2022
ISSN: ['0047-259X', '1095-7243']
DOI: https://doi.org/10.1016/j.jmva.2022.105069